Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Autoimmun Rev ; 22(2): 103236, 2023 Feb.
Article En | MEDLINE | ID: mdl-36436750

Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.


Autoimmune Diseases , Autoimmunity , Humans , Autoimmune Diseases/etiology , Autoantibodies , Autoantigens , Lymphocytes
3.
Front Immunol ; 13: 865241, 2022.
Article En | MEDLINE | ID: mdl-36248903

Chronic blistering at the skin and/or mucous membranes, accompanied by a varying degree of inflammation, is the clinical hallmark of pemphigoid diseases that impose a major medical burden. Pemphigoid diseases are caused by autoantibodies targeting structural proteins of the epithelial basement membrane. One major pathogenic pathway of skin blistering and inflammation is activation of myeloid cells following Fc gamma receptor-dependent binding to the skin-bound immune complexes. This process requires activation of specific kinases, such as PI3Kδ, which have emerged as potential targets for the treatment of pemphigoid diseases. Yet, it is unknown if global cutaneous kinase activity present in lesional pemphigoid disease correlates with therapeutic effects following treatment with a given target-selective kinase inhibitor. To address this, we here first determined the kinase activity in three different mouse models of pemphigoid diseases: Antibody transfer-induced mucous membrane pemphigoid (MMP), antibody transfer-induced epidermolysis bullosa acquisita (EBA) and immunization-induced EBA. Interestingly, the kinome signatures were different among the three models. More specifically, PI3Kδ was within the kinome activation network of antibody transfer-induced MMP and immunization-induced EBA, but not in antibody transfer-induced EBA. Next, the therapeutic impact of the PI3Kδ-selective inhibitor parsaclisib was evaluated in the three model systems. In line with the kinome signatures, parsaclisib had therapeutic effects in antibody transfer-induced MMP and immunization-induced EBA, but not in autoantibody-induced EBA. In conclusion, kinase activation signatures of inflamed skin, herein exemplified by pemphigoid diseases, correlate with the therapeutic outcomes following kinase inhibition, demonstrated here by the PI3Kδ inhibitor parsaclisib.


Epidermolysis Bullosa Acquisita , Pemphigoid, Benign Mucous Membrane , Pemphigoid, Bullous , Animals , Antigen-Antibody Complex/therapeutic use , Autoantibodies , Inflammation/pathology , Mice , Pemphigoid, Benign Mucous Membrane/pathology , Phosphatidylinositol 3-Kinases , Receptors, IgG , Skin , Treatment Outcome
4.
J Invest Dermatol ; 142(6): 1552-1564.e8, 2022 06.
Article En | MEDLINE | ID: mdl-34793820

Substitution of IgG in antibody deficiency or application of high-dose intravenous IgG in patients with autoimmunity is a well-established treatment. However, data on the mode of action of intravenous IgG are controversial and may differ for distinct diseases. In this study, we investigated the impact and molecular mechanism of high-dose IgG (hd-IgG) treatment in murine autoantibody‒induced skin inflammation, namely, epidermolysis bullosa acquisita. Epidermolysis bullosa acquisita is caused by antibodies directed against type VII collagen and is mediated by complement activation, the release of ROS, and proteases by myeloid cells. In murine experimental epidermolysis bullosa acquisita, the disease can be induced by injection of anti‒type VII collagen IgG. In this study, we substantiate that treatment with hd-IgG improves clinical disease manifestation. Mechanistically, hd-IgG reduced the amount of anti‒type VII collagen in the skin and sera, which is indicative of an FcRn-dependent mode of action. Furthermore, in a nonreceptor-mediated fashion, hd-IgG showed antioxidative properties by scavenging extracellular ROS. Hd-IgG also impaired complement activation and served as a substrate for proteases, both key events during epidermolysis bullosa acquisita pathogenesis. Collectively, the nonreceptor-mediated anti-inflammatory properties of hd-IgG may explain the therapeutic benefit of intravenous IgG treatment in skin autoimmunity.


Epidermolysis Bullosa Acquisita , Animals , Autoantibodies , Collagen Type VII , Humans , Immunoglobulin G , Mice , Peptide Hydrolases , Reactive Oxygen Species
5.
Front Med (Lausanne) ; 8: 713312, 2021.
Article En | MEDLINE | ID: mdl-34557502

Class I phosphoinositide 3-kinases (PI3K) have been implemented in pathogenesis of experimental epidermolysis bullosa acquisita (EBA), an autoimmune skin disease caused by type VII collagen (COL7) autoantibodies. Mechanistically, inhibition of specific PI3K isoforms, namely PI3Kß or PI3Kδ, impaired immune complex (IC)-induced neutrophil activation, a key prerequisite for EBA pathogenesis. Data unrelated to EBA showed that neutrophil activation is also modulated by PI3Kα and γ, but their impact on the EBA has, so far, remained elusive. To address this and to identify potential therapeutic targets, we evaluated the impact of a panel of PI3K isoform-selective inhibitors (PI3Ki) on neutrophil function in vitro, and in pre-clinical EBA mouse models. We document that distinctive, and EBA pathogenesis-related activation-induced neutrophil in vitro functions depend on distinctive PI3K isoforms. When mice were treated with the different PI3Ki, selective blockade of PI3Kα (alpelisib), PI3Kγ (AS-604850), or PI3Kß (TGX-221) impaired clinical disease manifestation. When applied topically, only TGX-221 impaired induction of experimental EBA. Ultimately, multiplex kinase activity profiling in the presence of disease-modifying PI3Ki identified unique signatures of different PI3K isoform-selective inhibitors on the kinome of IC-activated human neutrophils. Collectively, we here identify topical PI3Kß inhibition as a potential therapeutic target for the treatment of EBA.

6.
Nat Commun ; 12(1): 302, 2021 01 12.
Article En | MEDLINE | ID: mdl-33436591

Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.


Autoimmune Diseases/enzymology , Autoimmune Diseases/pathology , Granzymes/antagonists & inhibitors , Granzymes/metabolism , Animals , Autoantigens/metabolism , Blister , Chemokine CXCL2/metabolism , Chemotactic Factors/pharmacology , Disease Models, Animal , Epidermolysis Bullosa/enzymology , Epidermolysis Bullosa/pathology , Humans , Inflammation/pathology , Integrin alpha6/metabolism , Interleukin-8/metabolism , Neutrophil Infiltration/drug effects , Non-Fibrillar Collagens/metabolism , Pemphigoid, Bullous/enzymology , Pemphigoid, Bullous/pathology , Severity of Illness Index , Collagen Type XVII
7.
Br J Pharmacol ; 177(22): 5114-5130, 2020 11.
Article En | MEDLINE | ID: mdl-32815159

BACKGROUND AND PURPOSE: Pemphigus is caused by autoantibodies against desmoglein (Dsg) 1, Dsg3, and/or non-Dsg antigens. Pemphigus vulgaris (PV) is the most common manifestation of pemphigus, with painful erosions on mucous membranes. In most cases, blistering also occurs on the skin, leading to areas of extensive denudation. Despite improvements in pemphigus treatment, time to achieve remission is long, severe adverse events are frequent and 20% of patients do not respond adequately. Current clinical developments focus exclusively on modulating B cell function or autoantibody half-life. However, topical modulation of PV autoantibody-induced blistering is an attractive target because it could promptly relieve symptoms. EXPERIMENTAL APPROACH: To address this issue, we performed an unbiased screening in a complex biological system using 141 low MW inhibitors from a chemical library. Specifically, we evaluated PV IgG-induced Dsg3 internalization in HaCaT keratinocytes. Validation of the 20 identified compounds was performed using keratinocyte fragmentation assays, as well as a human skin organ culture (HSOC) model. KEY RESULTS: Overall, this approach led to the identification of four molecules involved in PV IgG-induced skin pathology: MEK1, TrkA, PI3Kα, and VEGFR2. CONCLUSION AND IMPLICATIONS: This unbiased screening revealed novel mechanisms by which PV autoantibodies induce blistering in keratinocytes and identified new treatment targets for this severe and potentially life-threatening skin disease.


Pemphigus , Acantholysis/drug therapy , Autoantibodies , Desmoglein 3 , Humans , Keratinocytes , Pemphigus/drug therapy
8.
Br J Pharmacol ; 177(10): 2381-2392, 2020 05.
Article En | MEDLINE | ID: mdl-31975370

BACKGROUND AND PURPOSE: Pemphigus and pemphigoid diseases are characterized and caused predominantly by IgG autoantibodies targeting structural proteins of the skin. Their current treatment relies on general and prolonged immunosuppression that causes severe adverse events, including death. Hence, novel safe and more effective treatments are urgently needed. Due to its' physiological functions, the neonatal Fc receptor (FcRn) has emerged as a potential therapeutic target for pemphigus and pemphigoid, primarily because IgG is protected from proteolysis after uptake into endothelial cells. Thus, blockade of FcRn would reduce circulating autoantibody concentrations. However, long-term effects of pharmacological FcRn inhibition in therapeutic settings of autoimmune diseases are unknown. EXPERIMENTAL APPROACH: Therapeutic effects of FcRn blockade were investigated in a murine model of the prototypical autoantibody-mediated pemphigoid disease, epidermolysis bullosa acquisita (EBA). B6.SJL-H2s C3c/1CyJ mice with clinically active disease were randomized to receive either an anti-FcRn monoclonal antibody (4470) or an isotype control over 4 weeks. KEY RESULTS: While clinical disease continued to worsen in isotype control-treated mice, overall disease severity continuously decreased in mice injected with 4470, leading to almost complete remission in over 25% of treated mice. These clinical findings were paralleled by a reduction of autoantibody concentrations. Reduction of autoantibody concentrations, rather than modulating neutrophil activation, was responsible for the observed therapeutic effects. CONCLUSION AND IMPLICATIONS: The clinical efficacy of anti-FcRn treatment in this prototypical autoantibody-mediated disease encourages further development of anti-FcRn antibodies for clinical use in pemphigoid diseases and potentially in other autoantibody mediated diseases.


Epidermolysis Bullosa Acquisita , Animals , Autoantibodies , Endothelial Cells , Epidermolysis Bullosa Acquisita/drug therapy , Histocompatibility Antigens Class I , Mice , Receptors, Fc
9.
Curr Protoc Pharmacol ; 84(1): e55, 2019 03.
Article En | MEDLINE | ID: mdl-30786171

Pemphigoid diseases (PDs) are a group of autoimmune bullous diseases characterized and caused by autoantibodies targeting structural proteins of the skin and mucous membranes. Chronic inflammation, subepidermal blistering, and often scaring are the clinical characteristics of PDs. Itching and, in severe cases, disabilities resulting from scaring (i.e., blindness, esophageal strictures) are the leading subjective symptoms. Treatment of PDs, which is based on nonspecific immunosuppression, is challenging because of frequent relapses, lack of efficacy, and numerous adverse events. In addition, the incidence of PDs is increasing. Given the high morbidity, limited therapeutic options, and increasing incidence, there is a growing urgency for drug discovery to help treat this condition. The recent development of PD model systems has added to the understanding of PD pathogenesis and, based on these insights, new clinical trials will soon be launched. The (auto-)antibody transfer PD models allow for investigations into autoantibody-mediated tissue pathology, while immunization-induced PD models more closely resemble the clinical situation. The latter duplicate all aspects of the human disease and are useful for investigating PD pathogenesis and testing therapeutic interventions. This article describes antibody transfer and immunization-induced PD mouse models currently employed for translational PD research. © 2019 by John Wiley & Sons, Inc.


Pemphigoid, Bullous/drug therapy , Animals , Autoantibodies/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Blister/drug therapy , Blister/immunology , Disease Models, Animal , Drug Discovery/methods , Mice , Mucous Membrane/drug effects , Mucous Membrane/immunology , Pemphigoid, Bullous/immunology , Skin/drug effects , Skin/immunology , Skin Diseases, Vesiculobullous/drug therapy , Skin Diseases, Vesiculobullous/immunology
10.
Front Immunol ; 9: 1558, 2018.
Article En | MEDLINE | ID: mdl-30050528

Epidermolysis bullosa acquisita (EBA) is a rare, but prototypical, organ-specific autoimmune disease, characterized and caused by autoantibodies against type VII collagen (COL7). Mucocutaneous inflammation, blistering, and scarring are the clinical hallmarks of the disease. Treatment of EBA is difficult and mainly relies on general immunosuppression. Hence, novel treatment options are urgently needed. The phosphatidylinositol-3-kinase (PI3K) pathway is a putative target for the treatment of inflammatory diseases, including EBA. We recently discovered LAS191954, an orally available, selective PI3Kδ inhibitor. PI3Kδ has been shown to be involved in B cell and neutrophil cellular functions. Both cell types critically contribute to EBA pathogenesis, rendering LAS191954 a potential drug candidate for EBA treatment. We, here, demonstrate that LAS191954, when administered chronically, dose-dependently improved the clinical phenotype of mice harboring widespread skin lesions secondary to immunization-induced EBA. Direct comparison with high-dose corticosteroid treatment indicated superiority of LAS191954. Interestingly, levels of circulating autoantibodies were unaltered in all groups, indicating a mode of action independent of the inhibition of B cell function. In line with this, LAS191954 also hindered disease progression in antibody transfer-induced EBA, where disease develops dependent on myeloid, but independent of B cells. We further show that, in vitro, LAS191954 dose-dependently impaired activation of human myeloid cells by relevant disease stimuli. Specifically, immune complex-mediated and C5a-mediated ROS release were inhibited in a PI3Kδ-dependent manner. Accordingly, LAS191954 also modulated the dermal-epidermal separation induced in vitro by co-incubation of immune complexes with polymorph nuclear cells, thus pointing to an important role of PI3Kδ in EBA effector functions. Altogether, these results suggest a new potential mechanism for the treatment of EBA and potentially also other autoimmune bullous diseases.

11.
Front Immunol ; 9: 249, 2018.
Article En | MEDLINE | ID: mdl-29497423

Because of the morbidity and limited therapeutic options of autoimmune diseases, there is a high, and thus far, unmet medical need for development of novel treatments. Pemphigoid diseases, such as epidermolysis bullosa acquisita (EBA), are prototypical autoimmune diseases that are caused by autoantibodies targeting structural proteins of the skin, leading to inflammation, mediated by myeloid cells. To identify novel treatment targets, we performed cutaneous genome-wide mRNA expression profiling in 190 outbred mice after EBA induction. Comparison of genome-wide mRNA expression profiles in diseased and healthy mice, and construction of a co-expression network identified Sykb (spleen tyrosine kinase, SYK) as a major hub gene. Aligned, pharmacological SYK inhibition protected mice from experimental EBA. Using lineage-specific SYK-deficient mice, we identified SYK expression on myeloid cells to be required to induce EBA. Within the predicted co-expression network, interactions of Sykb with several partners (e.g., Tlr13, Jdp2, and Nfkbid) were validated by curated databases. Additionally, novel gene interaction partners of SYK were experimentally validated. Collectively, our results identify SYK expression in myeloid cells as a requirement to promote inflammation in autoantibody-driven pathologies. This should encourage exploitation of SYK and SYK-regulated genes as potential therapeutic targets for EBA and potentially other autoantibody-mediated diseases.


Autoimmune Diseases/immunology , Epidermolysis Bullosa Acquisita/immunology , Myeloid Cells/immunology , Skin/metabolism , Syk Kinase/immunology , Aged, 80 and over , Animals , Biopsy , Case-Control Studies , Disease Models, Animal , Epidermolysis Bullosa Acquisita/pathology , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Protein Interaction Maps/immunology , Skin/cytology , Skin/immunology , Skin/pathology , Syk Kinase/genetics , Whole Genome Sequencing
12.
Front Immunol ; 9: 386, 2018.
Article En | MEDLINE | ID: mdl-29541076

Skin mast cells (MCs), a resident immune cell type with broad regulatory capacity, play an important role in sensing danger signals as well as in the control of the local immune response. It is conceivable to expect that skin MCs regulate autoimmune response and are thus involved in autoimmune diseases in the skin, e.g., autoimmune bullous dermatoses (AIBD). Therefore, exploring the role of MCs in AIBD will improve our understanding of the disease pathogenesis and the search for novel therapeutic targets. Previously, in clinical studies with AIBD, particularly bullous pemphigoid, patients' samples have demonstrated that MCs are likely involved in the development of the diseases. However, using MC-deficient mice, studies with mouse models of AIBD have obtained inconclusive or even discrepant results. Therefore, it is necessary to clarify the observed discrepancies and to elucidate the role of MCs in AIBD. Here, in this review, we aim to clarify discrepant findings and finally elucidate the role of MCs in AIBD by summarizing and discussing the findings in both clinical and experimental studies.


Autoimmune Diseases/immunology , Mast Cells/immunology , Skin Diseases, Vesiculobullous/immunology , Skin/immunology , Animals , Cell Degranulation , Disease Models, Animal , Humans , Immunity, Innate , Mice
14.
Front Immunol ; 8: 1628, 2017.
Article En | MEDLINE | ID: mdl-29225603

Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated ß2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.

15.
Mol Med ; 22: 918-926, 2017 Feb.
Article En | MEDLINE | ID: mdl-27999842

Epidermolysis bullosa acquisita (EBA) is a difficult-to-treat subepidermal autoimmune blistering skin disease (AIBD) with circulating and tissue-bound anti-type VII collagen antibodies. Different reports have indicated an increased concentration of tumor necrosis factor alpha (TNF) in the serum and blister fluid of patients with subepidermal AIBDs. Furthermore, successful anti-TNF treatment has been reported for individual patients with AIBDs. Here, we show that in mice, induction of experimental EBA by repeated injections of rabbit-anti mouse type VII collagen antibodies led to increased expression of TNF in skin, as determined by real-time PCR and immunohistochemistry. To investigate if the increased TNF expression is of functional relevance in experimental EBA, we inhibited TNF function using the soluble TNF receptor fusion protein etanercept (Enbrel®) or a monoclonal antibody to murine TNF. Interestingly, mice receiving either of these two treatments showed significantly milder disease progression than controls. In addition, immunohistochemical staining demonstrated reduced numbers of macrophages in lesional skin in mice treated with TNF inhibitors compared to controls. Furthermore, etanercept treatment significantly reduced the disease progression in immunization-induced EBA. In conclusion, the increased expression of TNF in experimental EBA is of functional relevance, as both the prophylactic blockade of TNF and the therapeutic use of etanercept impaired the induction and progression of experimental EBA. Thus, TNF is likely to serve as a new therapeutic target for EBA and AIBDs with a similar pathogenesis.

16.
Sci Rep ; 6: 38357, 2016 12 05.
Article En | MEDLINE | ID: mdl-27917914

T cells are key players in autoimmune diseases by supporting the production of autoantibodies. However, their contribution to the effector phase of antibody-mediated autoimmune dermatoses, i.e., tissue injury and inflammation of the skin, has not been investigated. In this paper, we demonstrate that T cells amplify the development of autoantibody-induced tissue injury in a prototypical, organ-specific autoimmune disease, namely epidermolysis bullosa acquisita (EBA) - characterized and caused by autoantibodies targeting type VII collagen. Specifically, we show that immune complex (IC)-induced inflammation depends on the presence of T cells - a process facilitated by T cell receptor (TCR)γδ and NKT cells. Because tissue damage in IC-induced inflammation is neutrophil-dependent, we further analyze the interplay between T cells and neutrophils in an experimental model of EBA. We demonstrate that T cells not only enhance neutrophil recruitment into the site of inflammation but also interact with neutrophils in lymphatic organs. Collectively, this study shows that T cells amplify the effector phase of antibody-induced tissue inflammation.


Autoantibodies/biosynthesis , Epidermolysis Bullosa Acquisita/immunology , Natural Killer T-Cells/immunology , Neutrophils/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Cell Communication/immunology , Collagen Type VII/genetics , Collagen Type VII/immunology , Cricetulus , Disease Models, Animal , Epidermolysis Bullosa Acquisita/chemically induced , Epidermolysis Bullosa Acquisita/pathology , Gene Expression , Humans , Immunoglobulin G/biosynthesis , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Natural Killer T-Cells/pathology , Neutrophils/pathology , Rabbits , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Signal Transduction , Skin/pathology , Spleen/immunology , Spleen/pathology , T-Lymphocytes/pathology
17.
J Invest Dermatol ; 136(11): 2211-2220, 2016 11.
Article En | MEDLINE | ID: mdl-27388992

Pemphigoid diseases such as epidermolysis bullosa acquisita (EBA) may be difficult to treat. In pemphigoid diseases, mucocutaneous blistering is caused by autoantibodies to hemidesmosomal antigens; in EBA the autoantigen is type VII collagen. Despite growing insights into pemphigoid disease pathogenesis, corticosteroids are still a mainstay of treatment. In experimental EBA, myeloid cell activation is a key event leading to blistering. Activation of these cells depends on phosphodiesterase (PDE) 4. We therefore evaluated the potential for PDE4 inhibition in EBA: PDE4 was highly expressed in inflammatory cells and in the epidermis of patients compared with healthy skin samples. PDE4 inhibitors rolipram, roflumilast, and roflumilast N-oxide prevented the release of immune complex-induced reactive oxygen species from polymorphonuclear leukocytes and separation of the dermal-epidermal junction of skin incubated with antibodies to collagen type VII and polymorphonuclear leukocytes. The PDE4 inhibitors also impaired CD62L shedding and decreased CD11b expression on immune complex-stimulated polymorphonuclear leukocytes. For in vivo validation, experimental EBA was induced in mice by transfer of anti-collagen type VII IgG or immunization with collagen type VII. Roflumilast dose-dependently reduced blistering in antibody transfer-induced EBA and also hindered disease progression in immunization-induced EBA. PDE4 inhibition emerges as a new treatment modality for EBA and possibly other neutrophil-driven pemphigoid diseases.


Aminopyridines/therapeutic use , Benzamides/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 4/biosynthesis , Epidermis/pathology , Epidermolysis Bullosa Acquisita/drug therapy , Phosphodiesterase 4 Inhibitors/therapeutic use , Animals , Antigen-Antibody Complex , Autoantibodies/immunology , Autoantigens/immunology , Cyclic Nucleotide Phosphodiesterases, Type 4/immunology , Cyclopropanes/therapeutic use , Disease Models, Animal , Epidermis/immunology , Epidermolysis Bullosa Acquisita/metabolism , Epidermolysis Bullosa Acquisita/pathology , Humans , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism
18.
J Pathol ; 237(1): 111-22, 2015 Sep.
Article En | MEDLINE | ID: mdl-25953430

Genetic studies have added to the understanding of complex diseases. Here, we used a combined genetic approach for risk-loci identification in a prototypic, organ-specific, autoimmune disease, namely experimental epidermolysis bullosa acquisita (EBA), in which autoantibodies to type VII collagen (COL7) and neutrophil activation cause mucocutaneous blisters. Anti-COL7 IgG induced moderate blistering in most inbred mouse strains, while some showed severe disease or were completely protected. Using publicly available genotyping data, we identified haplotype blocks that control blistering and confirmed two haplotype blocks in outbred mice. To identify the blistering-associated genes, haplotype blocks encoding genes that are differentially expressed in EBA-affected skin were considered. This procedure identified nine genes, including retinoid-related orphan receptor alpha (RORα), known to be involved in neurological development and function. After anti-COL7 IgG injection, RORα+/- mice showed reduced blistering and homozygous mice were completely resistant to EBA induction. Furthermore, pharmacological RORα inhibition dose-dependently blocked reactive oxygen species (ROS) release from activated neutrophils but did not affect migration or phagocytosis. Thus, forward genomics combined with multiple validation steps identifies RORα to be essential to drive inflammation in experimental EBA.


Epidermolysis Bullosa Acquisita/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Skin/metabolism , Animals , Autoantibodies/immunology , Collagen Type VII/immunology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Partial Agonism , Epidermolysis Bullosa Acquisita/genetics , Epidermolysis Bullosa Acquisita/immunology , Epidermolysis Bullosa Acquisita/pathology , Genetic Predisposition to Disease , Genomics/methods , Haplotypes , Heterozygote , Homozygote , Immunoglobulin G/immunology , Mice, Knockout , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 1/deficiency , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , Phenotype , Reactive Oxygen Species/metabolism , Signal Transduction , Skin/drug effects , Skin/immunology , Skin/pathology , Species Specificity , Sulfonamides/pharmacology , Thiophenes/pharmacology , Time Factors
19.
Autoimmun Rev ; 14(9): 751-9, 2015 Sep.
Article En | MEDLINE | ID: mdl-25913139

Beside their well known role in allergy, mast cells (MCs) are capable to sense multiple signals and have therefore the potential to be involved in many immune responses. MCs are actively present in the target tissues of some autoimmune disorders, suggesting a possible function in the manifestation of such diseases. This idea is strengthened by the evidence that KIT-dependent MC-deficient mice are protected from disease in many mouse models of autoimmunity, including multiple sclerosis, rheumatoid arthritis and autoimmune skin blistering diseases. Thus, the essential role of MCs in autoimmunity not only significantly extends the knowledge of MCs in the immune response but also provides novel therapeutic targets for the treatment of such diseases. However, recent studies using a new generation of KIT-independent MC-deficient strains could not confirm an essential participation of MCs in autoimmune diseases. Therefore, it is necessary to clarify the observed discrepancies and to elucidate the role of MCs in autoimmune diseases. Here, we review the impact of MCs on the development of autoimmune diseases with focus on the controversial effects of MC deficiency in different mouse models of autoimmune diseases. We also try to clarify contradictory findings in mouse studies to finally elucidate the role of MCs in autoimmunity.


Autoimmunity , Mast Cells/immunology , Animals , Autoimmune Diseases/immunology , Humans , Proto-Oncogene Proteins c-kit/immunology , Skin Diseases/immunology
20.
Eur J Immunol ; 45(5): 1462-70, 2015 May.
Article En | MEDLINE | ID: mdl-25678008

The role of mast cells (MCs) in autoimmunity is the matter of an intensive scientific debate. Based on observations in different MC-deficient mouse strains, MCs are considered as fundamental players in autoimmune diseases. However, most recent data suggest that the outcome of such diseases is strongly affected by the individual mouse strain used. By the use of two c-Kit mutant MC-deficient mouse strains and one c-Kit-independent strain, we here investigated the role of MCs in a systemic Ab transfer model of epidermolysis bullosa acquisita, a subepidermal autoimmune blistering skin disease characterized by autoantibodies against type VII collagen. While C57BL/6J-Kit(W-sh/W-sh) mice developed an unexpected increased blistering phenotype, no significant differences to WT controls were seen in WBB6F1 -Kit(W/W-v) or the novel Mcpt5-Cre iDTR animals. Interestingly, in a local Ab transfer model, which induces a localized disease, we showed that application of high concentrations of anti-COL7 (where COL7 is type VII collagen) Abs induced MC activation and MC-dependent edema formation that did, however, not contribute to blister induction. Our results indicate that in the autoimmune disorder epidermolysis bullosa acquisita MCs do not contribute to the immune-mediated tissue injury. Modern c-Kit mutant-independent MC-deficient mouse strains will help to further redefine the role of MCs in autoimmunity.


Epidermolysis Bullosa Acquisita/etiology , Mast Cells/immunology , Animals , Autoantibodies/metabolism , Cell Degranulation/immunology , Chymases/genetics , Chymases/immunology , Collagen Type VII/immunology , Disease Models, Animal , Epidermolysis Bullosa Acquisita/immunology , Epidermolysis Bullosa Acquisita/pathology , Humans , Immunization, Passive , Mast Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Phenotype , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology
...